Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies
نویسندگان
چکیده
The propensity score is defined as a subject's probability of treatment selection, conditional on observed baseline covariates. Weighting subjects by the inverse probability of treatment received creates a synthetic sample in which treatment assignment is independent of measured baseline covariates. Inverse probability of treatment weighting (IPTW) using the propensity score allows one to obtain unbiased estimates of average treatment effects. However, these estimates are only valid if there are no residual systematic differences in observed baseline characteristics between treated and control subjects in the sample weighted by the estimated inverse probability of treatment. We report on a systematic literature review, in which we found that the use of IPTW has increased rapidly in recent years, but that in the most recent year, a majority of studies did not formally examine whether weighting balanced measured covariates between treatment groups. We then proceed to describe a suite of quantitative and qualitative methods that allow one to assess whether measured baseline covariates are balanced between treatment groups in the weighted sample. The quantitative methods use the weighted standardized difference to compare means, prevalences, higher-order moments, and interactions. The qualitative methods employ graphical methods to compare the distribution of continuous baseline covariates between treated and control subjects in the weighted sample. Finally, we illustrate the application of these methods in an empirical case study. We propose a formal set of balance diagnostics that contribute towards an evolving concept of 'best practice' when using IPTW to estimate causal treatment effects using observational data.
منابع مشابه
The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies
Propensity score methods are increasingly being used to estimate the effects of treatments on health outcomes using observational data. There are four methods for using the propensity score to estimate treatment effects: covariate adjustment using the propensity score, stratification on the propensity score, propensity-score matching, and inverse probability of treatment weighting (IPTW) using ...
متن کاملComparing approaches to causal inference for longitudinal data: inverse probability weighting versus propensity scores.
In observational studies for causal effects, treatments are assigned to experimental units without the benefits of randomization. As a result, there is the potential for bias in the estimation of the treatment effect. Two methods for estimating the causal effect consistently are Inverse Probability of Treatment Weighting (IPTW) and the Propensity Score (PS). We demonstrate that in many simple c...
متن کاملVariance estimation when using inverse probability of treatment weighting (IPTW) with survival analysis
Propensity score methods are used to reduce the effects of observed confounding when using observational data to estimate the effects of treatments or exposures. A popular method of using the propensity score is inverse probability of treatment weighting (IPTW). When using this method, a weight is calculated for each subject that is equal to the inverse of the probability of receiving the treat...
متن کاملThe performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes
There is increasing interest in estimating the causal effects of treatments using observational data. Propensity-score matching methods are frequently used to adjust for differences in observed characteristics between treated and control individuals in observational studies. Survival or time-to-event outcomes occur frequently in the medical literature, but the use of propensity score methods in...
متن کاملVariance reduction in randomised trials by inverse probability weighting using the propensity score
In individually randomised controlled trials, adjustment for baseline characteristics is often undertaken to increase precision of the treatment effect estimate. This is usually performed using covariate adjustment in outcome regression models. An alternative method of adjustment is to use inverse probability-of-treatment weighting (IPTW), on the basis of estimated propensity scores. We calcula...
متن کامل